
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018 2677

Secure Hashing-Based Verifiable Pattern Matching
Fei Chen, Donghong Wang , Ronghua Li, Jianyong Chen , Zhong Ming, Alex X. Liu ,

Huayi Duan , Cong Wang , and Jing Qin

Abstract— Verifiable pattern matching is the problem of find-
ing a given pattern verifiably from the outsourced textual data,
which is resident in an untrusted remote server. This problem
has drawn much attention due to a large number of applications.
The state-of-the-art method for this problem suffers from low
efficiency. To enable fast verifiable pattern matching, we propose
a novel scheme in this paper. Our scheme is based on an ordered
set accumulator data structure and a newly developed verifiable
suffix array structure, which only involves fast cryptographic
hash computations. Our scheme also supports fast multiple-
occurrence pattern matching. A striking feature of our proposed
scheme is that our scheme works even with no secret keys, which
ensures public verifiability. We conduct extensive experiments to
evaluate the proposed scheme using Java. The results show that
our scheme is orders of magnitude faster than the state-of-the-art
work. Specifically, our scheme with public verifiability only costs
a preprocessing time of 47 s (merely one-time off-line cost during
outsourcing), a search time of 30 µs, a verification time of 149 µs,
and a proof size of 2760 bytes for a verifiable pattern matching
query with pattern length 200 on 10-million long textual data
which consists of sequences of two-byte, Unicode characters in
Java.

Index Terms— Pattern matching outsourcing, verifiability,
accumulator, hashing.

Manuscript received December 25, 2017; revised March 10, 2018; accepted
March 18, 2018. Date of publication April 9, 2018; date of current version
May 21, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61502314 and Grant 61672358,
in part by the Science and Technology Plan Projects of Shenzhen under Grant
JCYJ20160307115030281 and Grant JCYJ20170302145623566, in part by
a Grant from the Innovation and Technology Fund of Hong Kong under
Project ITS/304/16, and in part by CCF-Venustech funding under Grant
CCF-VenustechRP2017001. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Julien Bringer.
(Corresponding author: Jianyong Chen.)

F. Chen, D. Wang, J. Chen, and Z. Ming are with the Col-
lege of Computer Science and Engineering, Shenzhen University, Shen-
zhen 518060, China (e-mail: fchen@szu.edu.cn; dhwwang@gmail.com;
jychen@szu.edu.cn; mingz@szu.edu.cn).

R. Li is with the School of Computer Science and Technol-
ogy, Beijing Institute of Technology, Beijing 100081, China (e-mail:
lironghuascut@gmail.com).

A. X. Liu is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824 USA, and also with the
State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210008, China (e-mail: alexliu@cse.msu.edu).

H. Duan and C. Wang are with the Department of Computer Science, City
University of Hong Kong, Hong Kong (e-mail: hduan2-c@my.cityu.edu.hk;
congwang@cityu.edu.hk).

J. Qin is with the Center for Smart Health, School of Nurs-
ing, The Hong Kong Polytechnic University, Hong Kong (e-mail:
harry.qin@polyu.edu.hk).

This paper has supplementary downloadable material at
http://ieeexplore.ieee.org, provided by the authors. The file consists of
additional performance evaluation results of the proposed scheme. The
material is 139 KB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2018.2825141

Fig. 1. Verifiable pattern matching model.

I. INTRODUCTION

A. Motivation and Problem Statement

PATTERN matching has found numerous applications in
deep packet inspection, intrusion detection, spam filtering,

text search, bioinformatics etc. With the ongoing paradigm
shift of cloud computing, researchers are studying traditional
pattern matching outsourcing to a remote server [1]–[7],
which is the core of cloud-based applications involving pattern
matching, e.g. cloud firewall, cloud middlebox services, etc.
While pattern matching is well studied, outsourcing pattern
matching query to a remote server poses new challenges,
because the remote server may not be trusted for concerns
on its management issues, software and hardware failures,
potential hacking incentives etc. Among the challenges, a fun-
damental one is how to verify the correctness of outsourced
pattern matching results from the remote server, which is
referred to as verifiable pattern matching.

In this paper, we study verifiable pattern matching in a
typical service model shown in Fig. 1, where three types of
entities are involved, i.e. data owner, data user, and server.
The data owner outsources/publishes its data, which can be
regarded as a long sequence of characters from a given
alphabet, to a remote server (e.g. cloud). Afterwards, pattern
matching queries can be issued by data users to the server on
demand; the query result could be one or more matches of the
queried pattern in the outsourced data, (collectively) called the
case of match, or no match at all, called the case of mismatch.

The data owner and the data user trust each other, but not
the server. The untrusted server, incentivized by the economic
benefit from reduced computation burden for example, may
only do partial processing and return a mismatch result for a
genuinely matched query, and vice versa. Under a verifiable
setting, the data owner will send augmenting authentication
information, in addition to the outsourced data itself, to the

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2553-6330
https://orcid.org/0000-0002-6203-1254
https://orcid.org/0000-0002-6916-1326
https://orcid.org/0000-0002-1162-2337
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0002-2961-0860

2678 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

server during system setup; later, the server must return
corresponding proof along with the result in response to
subsequent query. The user can in turn validate the query result
with the proof.

B. Limitation of Prior Art
The main limitation of current verifiable pattern matching

solutions [5], [8]–[10] is that they require large computation,
communication overhead. The state-of-the-art solution for ver-
ifiable pattern matching appeared at [5]. The proposed scheme
features asymptotically optimal proof size; the search time
is also independent on the outsourced text size. However,
it relies on heavy public key cryptographic computations over
big integers. Besides the state-of-the-art work, other solutions
also exist. The general solution in [8] requires considerable
communication cost because the nodes in the underlying
directed acyclic graph have variant out-degrees. Other works
[9], [10] are mainly of theoretic interest; they formulate the
pattern matching problem as polynomial/integer substraction,
thus the pattern matching takes time linear in the text size,
which is pretty slow in practice for million-scale and larger
texts.

C. Proposed Approach
To enable fast verifiable pattern matching, we propose

a novel scheme in this work. Our scheme only relies on
collision resistant hash functions and general-purpose secure
authentication schemes. This makes our scheme orders of
magnitude faster than the state-of-the-art work [5]. Our scheme
even works with no secret key, if required.

From a high level, our scheme works as follows. We first
enable fast pattern matching using a traditional approach.
Specifically, given a string with length n, we sort all its n suffix
strings in ascending order. To search a pattern string p, we use
the binary search method; we compare p with the sorted suffix
strings. If the pattern p is a match, p can be matched by a
suffix string. Algebraically, there exists two suffix strings α, β
such that β = p||α where || denotes string concatenation.
Similarly, if the pattern is a mismatch, the binary search
stops with two neighbouring sorted suffix strings such that
the pattern lies between them. Algebraically, there exists two
neighboured suffix strings α, β such that α < p < β.
Therefore, with the sorted suffix strings, the pattern matching
problem is transformed into an algebraical problem.

Next, we design fast algorithms to verify the two algebraic
operations, i.e. string concatenation β = p||α and string
comparison α < p < β. To verify an equality β = p||α for
pattern match, we design a fast authenticated data structure
based on a collision-resistant cryptographic hash function to
allow a user checking the correctness of the equation. The
rationale of our data structure is that it compresses each
suffix string into an accumulated value that depends on all
the characters of the suffix string sequentially, which enables
equality verification.

To verify an inequality α < p < β for pattern mismatch,
we base the verification on an equality verification. We first
find the longest common prefix string of α and p; then we
extract a prefix of α containing the longest common prefix

string and one more subsequent character, denoted as γ .
To check the correctness of α < p, we only need to show
γ is contained in the outsourced string using an equality
verification. Similarly, we can prove p < β. To finally show
pattern p cannot be matched, we further prove that the two
suffix strings α, β are adjacent in the sorted suffix strings.
In our scheme, we use authenticated position information to
achieve this.

Using the verifiable equality and inequality checks,
we finally enable fast verifiable pattern matching. We also
optimize our scheme from three perspectives. We improve the
search time and the size of the proof returned from the server
to the optimal. We improve our scheme to support verifia-
bility. We also propose a more efficient scheme for a multi-
occurrence pattern match. It has fewer hash computations than
the direct approach that invokes the basic scheme multiple
times for each pattern match.

D. Technical Challenges and Solutions
To enable fast verifiable pattern matching, two main tech-

nical challenges exist. The first challenge is how to design a
verifiable data structure to enable fast pattern matching for
both match and mismatch cases. The second is how to enable
fast verification of a multiple-occurrence pattern matching.

For the first challenge, traditional approaches employ a
general accumulator to validate string concatenation and
string comparison relations. However, general accumulators
are based on public key cryptography and work over big
integer operations inefficiently. We aim at fast solutions. For
pattern matching, we observe that the strings are ordered and
that general accumulators are heavy tools. We thus design
a light-weight, efficient, collision-resistant-hash-only hash-
chain-like accumulator for strings, which we call ordered set
accumulator. This data structure supports extremely fast string
concatenation and string comparison verifications.

For the second challenge, a straight-forward approach is to
perform a verification for each matched pattern. While this
approach works, the communication cost is considerably high
that low-end devices may not be able to afford. Thus a faster
solution is better. We find that if a pattern can be matched
multiple times, their corresponding suffixes must be adjacent
to each other in the sorted suffix strings. By recording the
length of the longest common prefixes of each adjacent suffix
strings, multiple-occurrence matching verification can be made
faster. The multi-occurrence match verification problem is then
reduced to verify the first match, the last match, and whether
the lengths of the longest common prefixes in between are
larger than the length of the pattern. The first and last match
verification is similar to the basic scheme; for the length
verifications of the longest common prefixes, we build again
an ordered set accumulator to enable fast verifications.

E. Summary of Experimental Results
We prototyped and open-sourced our code in Java.

We employed public textual data in the evaluation, which
consists of sequences of characters; each character is stored
as a two-bye, Unicode character in Java. Experimental results
show that our scheme with public verifiability only costs

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2679

preprocessing time 0.46s (only one-time cost during data
outsourcing), search time 22μs, verification time 143μs, and
proof size 2032 bytes for a verifiable pattern matching query
with pattern length 200 on a text data with length 100,000 on
a commodity PC. When the text size scales to 10 million,
our scheme only costs preprocessing time 47s, search time
30μs, verification time 149μs, and proof size 2760 bytes for
a verifiable pattern matching query with pattern length 200.
The experimental results confirm that our scheme is highly
efficient and scalable.

II. RELATED WORK

Researchers have proposed several schemes to address
verifiable pattern matching. We categorize these works into
two groups: practical solutions and theoretical solutions. For
the former, the proposed solutions are much faster and thus
more suitable for practical applications. For the latter, the pro-
posed solutions are often with theoretical, scientific interests,
although having performance drawbacks. We discuss these two
groups in more details.

A. Practical Solutions

The first practical solution is the work by Martel et al. [8].
They proposed a general scheme for verifiable query outsourc-
ing on a remote server. This scheme was built on a core
verifiable data structure - directed acyclic graph, which is so
general that many practical data structures (e.g. array, list,
tree) can be modeled as it is. Its general nature also results in
large communication cost, which is normally a bottleneck of
current cloud-based applications. The state-of-the-art solution
is by Papadopoulos et al. [5]. This scheme has an optimal
constant proof size. However, verification and preprocessing
time are considerably large due to the big integer operations
of the public key cryptography. Zhou et al. [11] also proposed
a scheme to authenticate multi-pattern matching on fixed text.
The search time is linear on the text length, which poses
challenges for million-scale text pattern matching.

B. Theoretical Solutions

Researchers also proposed several theoretical solutions,
which are also interesting although the efficiency is relatively
lower. Catalano et al. [9] modeled the pattern matching
problem as a vector identity testing problem, based on which
the authors proposed verifiable pattern matching scheme using
homomorphic MACs for polynomials. This scheme scans
all the outsourced string; thus, the search time is linear.
Zhou et al. [10] modeled pattern matching as polynomial
identity tests. This work also employs sequential comparison
to solve pattern matching. The performances of both schemes
decline dramatically when the data scale up.

Some work has been done on privacy-preserving pattern
matching. Wang et al. [12] transformed a pattern to a vector
and then modeled pattern matching as vector similarity com-
putations. The privacy is protected by encrypting the pattern-
to-vector transformation. Liang et al. [13] modeled pattern
matching using finite automata and protected the privacy using

functional encryptions. Compared with our work here, such
prior work concerns privacy under the semi-honest model, but
not verifiability. It is worth noting that verifiability and privacy
are two different, yet complementary, aspects of pattern match-
ing outsourcing; both aspects are important [5], [9], [12]–[14].

Closely related to verifiable pattern matching, researchers
also studied verifiable spatial databases and relational data-
bases. Hu et al. [15] proposed a scheme for verifiable nearest
neighbors query for a spatial database based on Voronoi
diagram. Chen et al. [16] also studied the problem using
R-tree and the power diagram for location based services. For
relational databases, Riaz-ud-Din et al. [17] studied verifiable
string matching for relational databases with text attributes.
The scheme first employs a suffix array for searching (but
not for authenticating), and then uses a Merkle hash tree to
authenticate each matched rows, which incurs a linear commu-
nication cost in terms of each matched row. Zhang et al. [18]
proposed an interesting scheme for verifiable SQL queries over
outsourced cloud relational databases. This scheme supports
expressive SQL queries. Chen et al. [19], [20] further proposed
two schemes for efficient database updates based on vector
commitments and MACs. Compared with verifiable pattern
matching studied in this work, spatial database and relational
database are inherently different: database is more structured
than a long, consecutive text; thus, solutions for verifiable
databases are not known to be effective for pattern matching
over such text.

III. PROPOSED BASIC SCHEME

A. Threat Model, Assumptions, and Formalization

We model the server as untrusted. The server may cheat
to save computation and communication costs; the cheating
may be caused by malicious employees, or hardware/software
faults. We assume the data owner and the data user are
mutually trusted. This assumption sounds because practical
application mainly considers the server as the untrusted entity.
This work mainly pursues fast verifiability, similar to the
state-of-the-art scheme [5]. This is because verifiability can
guarantee faithful service quality; it is sufficient for typical
applications, e.g. data publishing to third-party servers. We
later also show how to extend the proposed scheme to further
protect privacy.

A verifiable pattern matching scheme proceeds in three
phases: preprocess phase, search phase, and verification phase
respectively.

• PREPROCESS(T, K) → T ′. The data owner first initial-
izes the verifiable pattern matching scheme. The data
owner may (or may not) generate some secret key K
with regard to a security level λ. Then the data owner
preprocesses the data T by embedding authentication
information to enable future pattern matching verifica-
tions. After preprocessing, data owner outsources the
processed data T ′ to the server. The data owner also
shares the secure key K (if any) with the data user.

• SEARCH(T ′, q) → (χ, �). After receiving a pattern
matching query q from a data user, the server searches
for the pattern in the outsourced data T ′ and then returns

2680 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

the search result χ to the user. Additionally, the server
also returns a proof � to prove that the returned result is
correct.

• VERIFY(q, K , χ, �) → δ ∈ {0, 1}. On receiving the
pattern matching result (χ, �) from the server, the data
user checks whether it is correct using the query q and
the secret key K (if any). If it is correct, the data user
accepts the result and outputs 1; otherwise rejects it and
outputs 0.

1) Security Model: We formalize the cheating phenomenon
first. Define a tuple (q∗, χ∗, �∗) as a forgery if either the
following case holds: 1) q∗ can be matched by the outsourced
data, but the server using (χ∗, �∗) successfully proves that
it cannot be matched, or it is matched in a wrong position;
2) q∗ cannot be matched by the outsourced data, but the server
successfully proves that it is matched by the outsourced data.
Then, a server is cheating if the server can find such a forgery.
Thus we have the following standard security definition.

Definition 1: Let Pr[Cheat] be

Pr

⎡
⎢⎢⎣

T ′ ← Preprocess(T, K)
(χi , �i)← Search(T ′, qi)
δi ← Verify(qi , χi , �i ; K)

i = 1, · · · , poly(λ)

:
A(T ′, qi ,δi)

finds a forgery
(q∗, χ∗, �∗)

⎤
⎥⎥⎦ (1)

which denotes the probability that an untrusted server A can
find a forgery (q∗, χ∗, �∗) after the server having learned
about the verifiable pattern matching scheme by running
polynomial times of the scheme. If Pr[Cheat] is negligible,
we say such a verifiable pattern matching scheme is secure.

B. Notation and Suffix Array Based Pattern Matching

Let S denote a string of length n and S = S[1]S[2] · · · S[n]
with a special ending symbol ‘$’. Let S[i, j] denote the
substring of S which starts from position i to end position j
inclusive, i.e. S[i, j] = S[i]S[i + 1] · · · S[j], 1 ≤ i ≤ j ≤
n. The suffix of the string S is S[i, n], 1 ≤ i ≤ n. For
convenience, we denote SFi = S[i, n]. Pattern matching is
then to find a pattern string in a given string; its alphabet is
the set of all possible characters in the string. In this work,
we study substring patterns (possibly with wildcard characters
‘*’ and ‘?’).

Suffix array is a standard data structure [21]–[23], which
stores all suffixes of a string in a sorted manner. Denote a
suffix array of string S as SA. It is a numeric array; SA[i]
denotes the start position of the i -th suffix string, i.e. SFSA[i]
has rank i with regard to the ascending order of all suffix
strings. Algorithm 1 details how to employ binary search in
suffix array to find a pattern.

We explicitly list the matching rules for both match and
mismatch as follows:

• Match Case: Once we found a suffix SFSA[i] whose
prefix matches the pattern P , there must exist another
suffix SFSA[i]+m such that SFSA[i] = P||SFSA[i]+m .

• Mismatch Case: When arriving at the end of the
search, the search index range must be (i, i + 1)(1 ≤
i < n) or (n, n). There must exist the situation with
SFSA[i] < P < SFSA[i+1] or SFSA[n] < P .

Algorithm 1 Suffix Array Based Pattern Matching
Input: S, P: a string S with length n and a special ending

symbol ‘$’, and a pattern P with length m
Output: MATCH, MISMATCH
1: Let (L, R) = (1, n).
2: while L ≤ R do
3: M = L+R

2
4: if P is a prefix of SFSA[M] then
5: Pattern is matched.
6: return MATCH.
7: else if P < SFSA[M] then
8: R = M − 1
9: else

10: L = M + 1
11: end if
12: end while
13: return MISMATCH.

We later employ the above two cases to design our verifiable
pattern matching scheme.

C. Understanding Verifiable Pattern Matching

To address verifiability, we need to understand the problem
itself and its unique challenges. We handle verifiable pattern
matching in two steps: first, we address verifiable substring
pattern match; then, we generalize our solution for wildcard
pattern matching.

Two challenges exist for verifiable substring pattern match-
ing. The most prominent one is how to verify an arbitrary
substring search in a long continuous text on a remote
server. Specifically, we need to solve the following difficulties:

• the substring may appear in the text at arbitrary positions;
• the substring could be any-length long;
• the substring may not be matched by the text;
• the substring may be matched for multiple times.

After a substring can be verified, another challenge is
how to, from the design perspective, make the verification as
efficient and simple as possible. Generally, a scheme builds
on public key cryptography is not efficient compared with that
based on private key cryptography. A simple verifiable pattern
matching scheme also should embed minimal information
during the interactions between a user and a remote server.

D. Technical Preparation: Ordered Set Accumulator

Our scheme design employs a new mechanism which we
call ordered set accumulator and describe in this subsection.
This mechanism can solve the first challenge and the partial of
the second challenge of verifiable substring pattern matching
as discussed in the last subsection.

Specially, an ordered set accumulator takes an ordered set
{a1, a2, · · · , an} as an input where ai ∈ {0, 1}∗, then outputs
a fixed-length aggregation value for each element recursively
as follows:

hai = H(ai ||hai+1) (2)

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2681

where 1 ≤ i ≤ n − 1, han = H(an), H(·) is a cryptographic
hash function, and ‘||’ denotes string concatenation. We call
the set {hai , 1 ≤ i ≤ n} as ordered set accumulator; we also
call each hai as an accumulator for convenience.

To verify a subset containing some consecutive elements
{ai , · · · , a j } of the set, a remote server returns accumulators
hai , ha j+1. A user then checks whether

hai = H(ai ||H(ai+1||H(· · ·H(a j ||ha j+1) · · ·))) (3)

holds. If verification passes, the consecutive subset is then
authenticated. We employ this mechanism and the suffix
array to enable verifiable pattern matching in the following
subsections.

E. Our Approach

With all preparation work done, we now present our
approach. Our high-level main idea to solve the verifiable
substring pattern matching problem is summarized as index
construction and multiple-level authentication, which we spec-
ify as follows.

1) Index Construction: We employ suffix array to index
the outsourced text. The suffix array not only enables fast
substring pattern matching, but also makes pattern matching
easier to verify. Specifically, a suffix array sorts all the suffixes
of the text to be outsourced in an ascending order. With
suffix array, pattern matching is then transformed into a
string concatenation problem for a pattern match case, or a
string comparison problem for a pattern mismatch case. String
concatenation and string comparison are essentially algebraic
problems which are easier to verify the correctness.

We illustrate this idea using an example. Suppose the text
to be outsourced is “suffix$” where ‘$’ is a special character
not contained in any string and denotes the end of a string.
All its suffixes are “$”, “x$”, “ix$”, “fix$”, “ffix$”, “uffix$”,
“suffix$”. A suffix array sorts all the suffixes into an ascending
order, i.e. “$”, “ffix$”,“fix$”, “ix$”, “suffix$”, “uffix$”, “x$”
where ‘$’ is assumed to be smaller than any character. To find
a pattern p = “ff” for a match case, we can find two entries
α = “ix$” and β = “ffix$” in the suffix array such that β =
p||α where || denotes string concatenation. For a mismatch
case, to find a pattern p = “fg”, we can find two consecutive
entries α = “ffix$” and β = “fix$” in the suffix array such that
α < p < β. For both cases, we only need to handle algebraic
operations.

2) Multiple-Level Authentication: We employ the ordered
set accumulator to authenticate all suffixes; the authentication
further enables extremely fast string concatenation and string
comparison verification. Specifically, we first build an ordered
set accumulator for each suffix of the outsourced text. Later,
for a match case verification, it is relatively easy to verify
a string concatenation operation of two suffixes by using
Eq. (3). For a mismatch case verification, we first find two
consecutive suffixes, one of which is smaller than the pattern
while the other of which is larger; we then verify whether
the smaller- and larger- relation holds using the ordered set
accumulator. Additionally, we authenticate the correctness of
the accumulators to prevent forgery of such accumulators

Algorithm 2 Preprocess
Input: T : the text to be outsourced
Output: {SA, H, HA(T), Auth}: preprocessed text and

authentication information
1: The data owner constructs a suffix array SA for T and

chooses a collision-resistant hash function H.
2: Let x j = (j ||−||T [j]) represent the string consisting of an

index, a connection character ‘-’ not in any string, and the
j -th character T [j]. Calculate the ordered set accumulator
HA(T) = {hai |1 ≤ i ≤ n} for the set {x j , 1 ≤ j ≤ n}
where hai = H(xi ||H(xi+1||H(· · ·H(xn−1||H(xn))))).

3: Let ti = 〈i, haSA[i], SA[i]〉, 1 ≤ i ≤ n, which consists
of the suffix array index and the accumulator value of
a corresponding suffix. Authenticate each tuple using an
authentication scheme, obtaining Authi for ti . Denote the
set of {Authi } as Auth.

4: return {SA, H, HA(T), Auth}

by the server. During the authentication of the accumulators,
we also embed semantics (e.g. position information) to help
later verifications.

F. Detailed Scheme Design

We now show every detail of our scheme: Preprocess,
Search, and Verify. Let T be the text padded with the special
ending symbol ‘$’, which is to be outsourced. Denote a suffix
array as SA and a collision-resistant hash function as H.
Denote the ordered set accumulator as an array HA(T) and
its i -th element’s authentication information as Authi ; denote
also Auth as the set of all elements {Authi }. For authenticating
HA(T), our scheme uses a general authentication scheme, i.e.
either a MAC scheme or a Merkle hash tree scheme works.
For example, readers may consider Authi as the authentication
of the i -th accumulator in HA(T) using the classical HMAC
scheme. Denote the length of the longest common prefix of
two strings α, β as lcp(α, β). Denote the queried pattern as
P , its length as m, the returned search result as χ , and the
proof as �.

Preprocess. The data owner runs Algorithm 2 to pre-
process the text and then outsourced the processed text to
the server. The preprocessing mainly contains two steps:
indexing as in line 1 and authenticating as in lines 2 and 3.
We first authenticate each suffix of the text in line 2 in an
ordered set accumulator. The ordered set accumulator prevents
any modification of the outsourced text. We note that we
employ an enhanced semantics here: we embed the index
information in each character. The embedded index helps in
future verifications of pattern matching result.

We then further authenticate the ordered set accumulator
to prevent the server modifying these accumulators in line 3.
This is because we need authenticated accumulators to verify
a pattern match/mismatch result.

At the end of preprocessing, the data owner outsources
{T, SA, HA(T), Auth} to the server.

Search and Verify. We now discuss server search and
data user verification simultaneously. After receiving a pattern

2682 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

matching query from a data user, the server straight-forwardly
employs the suffix array and the outsourced text to search the
pattern. In order to make pattern matching result verifiable,
the server needs to return a proof information together with a
pattern matching result. We proceed in two parts: match and
mismatch.

MATCH: For a match case, the server just proves (or the
data user only verifies) that there are two suffixes α, β such
that α = P||β. The returned pattern matching result is in
Eq. (4). It returns two entries of the ordered set accumulator
to the data user, i.e. haSA[i] and haSA[i]+m where S A[i]
is the matched position of the queried pattern and m is
the pattern length. Note that haSA[i] (as in the tuple ti =
〈i, haSA[i], SA[i]〉) is implicitly contained in the authenticated
Authi . For a match case, it holds that haSA[i] = P||haSA[i]+m .
The data user, holding these three strings, just verifies whether
this relation holds using Eq. (7).

Note that we only require haSA[i] be authenticated by
Authi , but not haSA[i]+m . This saves communication cost;
but it is also secure. If somehow a malicious server forges
haSA[i]+m , Equation (7) cannot be satisfied; otherwise, this
results in a collision for the chosen hash function. Please refer
to Theorem 2 for security argument.

MISMATCH: For the mismatch case, the searched pattern
is either lying between two consecutive suffixes, or greater the
largest suffix. We refer the former as the normal case and the
latter as the boundary case. The server just proves (or the data
user only verifies) the two cases.

For the normal case, we have SFSA[i] < P < SFSA[i+1] for
some i . Correspondingly, the returned result is as in Eq. (5).
It contains two parts: one is to prove SFSA[i] < P as in the
first two lines of �; the other is to prove P < SFSA[i+1] as
in the third and fourth lines of �.

Now we detail the idea to prove SFSA[i] < P . Let
SFSA[i] = α||γ1||beta1 and P = α||γ2||beta2, where α is
the longest common prefix of SFSA[i] and P with length
m1, γ1||beta1 and γ2||beta2 are the remaining strings of
SFSA[i] and P , and γ1 and γ2 are single characters. The first
and second lines of � prove that α||γ1 = SA[i]||T [SA[i]+m1]
is a substring of the outsourced text; note that this is similar
to a match case proof. Now the data user just needs to verify
γ1 < P[1 + m1] to confirm the relation SFSA[i] < P . Using
the same idea, the third and fourth lines of � show that
P < SFSA[i+1].

For the boundary case, it suffices to prove SFSA[n] < P .
This is just a special situation of the normal case. Similarly,
it is proved using Eq. (6).

1) Wildcards Pattern Matching: To extend the proposed
scheme to support wildcard (i.e. * or ?) pattern matching,
the idea is similar to [5]. That is to segment a wildcard pattern
matching query into substring matching using the wildcards
as delimiters to get a set of substrings. The server returns
each substring query to the user in the verifiable manner.
Finally, the user verifies the positions of the returned results,
in addition to the verifiable substring pattern matching search.
It is worth noting that both our scheme and the state-of-the-
art work cannot support general regular expression pattern
matching efficiently; we leave this as a future work.

Algorithm 3 Search
Input: P, T, SA, HA(T), Auth: searched pattern and the out-

sourced processed text
Output: {χ,�}: pattern matching result and correctness proof
1: The server uses text T and SA to search the pattern P .
2: if it is a match then
3: Let the matched position be SA[i]. The server finds

out Authi as an integrity proof of the tuple ti =
〈i, haSA[i], SA[i]〉.

4: The server also finds out the accumulator value haSA[i]+m

from HA(T).
5: The server returns

χ = ‘match’,

� = {i, SA[i], haSA[i]+m , Authi }. (4)

6: else
7: It is a mismatch. Two cases exist.
8: NORMAL CASE: SFSA[i] < P < SFSA[i+1] for some

i
9: Compute m1 = lcp(SFSA[i], P). Let the (m1 + 1)-th

character of SFSA[i] be T [SA[i]+m1]. The server finds
out the accumulator value haSA[i]+m1+1 from HA(T) and
an integrity proof Authi for ti = 〈i, haSA[i], SA[i]〉.

10: The server returns

χ = ‘mismatch’,

� = {{i, SA[i], m1, T [SA[i] + m1],
haSA[i]+m1+1, Authi },
{i + 1, SA[i + 1], m2, T [SA[i + 1] + m2],
haSA[i+1]+m2+1, Authi+1}}. (5)

11: BOUNDARY CASE: P > SFSA[n]
12: Similarly, the server returns

χ = ‘mismatch’,

� = {{n, SA[n], m1, T [SA[n] + m1],
haSA[n]+m1+1, Authn}}. (6)

13: end if

G. An Example

We further illustrate our scheme using a detailed example.
Let the text be “suffix”. The owner appends the special ending
character ‘$’ to the text to obtain T = “suffix$”, and then the
owner builds a suffix array for the text. We have

SA = [7, 3, 4, 5, 1, 2, 6].
Later, the owner computes the ordered set accumulator value
hai for each suffix SFi of T ; for instance

ha7 = H(7− $)

ha6 = H((6− x)||H(7− $))

ha5 = H((5− i)||H((6− x)||H(7− $))).

We then get the ordered set accumulator

HA(T) = {ha1, ha2, ha3, ha4, ha5, ha6, ha7}.

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2683

Algorithm 4 Verify
Input: P, K , χ, �: searched pattern, secret key (for the employed authentication scheme if any), and returned pattern matching

result
Output: ACCEPT, REJECT
1: MATCH CASE: Let x ′j = (SA[i] + j − 1|| − ||P[j]), 1 ≤ j ≤ m.
2: The data user verifies: 1) whether 〈i, ha′SA[i], SA[i]〉 is intact using Authi ; 2) whether SFSA[i] = P||SFSA[i]+m is correct

using

ha′SA[i] = H(x ′1||H(x ′2||H(· · ·H(x ′m ||haSA[i]+m) · · ·))). (7)

3: If all verifications are correct, return ACCEPT, otherwise REJECT.
4: MISMATCH NORMAL CASE: First, verify whether the two indices are consecutive. Then verify SFSA[i] < P according

to the followings: 1) whether T [SA[i] + m1] < P[m1 + 1]; 2) whether 〈i, ha′SA[i], SA[i]〉 is intact using Authi ; and 3)
whether

ha′SA[i] = H(x ′1||H(· · ·H(x ′m1
||H(xSA[i]+m1 ||haSA[i]+m1+1)) · · ·)).

5: Second, similar to SFSA[i] < P , verify P < SFSA[i+1] using three verifications.
6: If all verifications are correct, return ACCEPT, otherwise REJECT.
7: MISMATCH BOUNDARY CASE: It is similar to verify SFSA[i] < P with i = n specifically.

The owner continues to authenticate the tuples

ti = 〈i, haSA[i], SA[i]〉, 1 ≤ i ≤ n

using HMAC with a secret key, obtaining the authenticated
Auth = {Authi }. We note that Authi contains both the tuple
ti and its authentication. After the preprocessing, the owner
sends the text T , suffix array SA, the ordered set accumulator
HA(T), and Auth to the server; the data owner also shares the
hash function H and the secret key of HMAC with the data
users.

The server receives the preprocessed text from the data
owner and then is ready for pattern matching query from
data users. We discuss both a match and mismatch example,
respectively.

A user Alice sends a pattern matching query PA = “ff”
to the server, which is a matched pattern. The server uses
the suffix array based query algorithm to search the result,
getting the tuple 〈i, SA[i]〉 = 〈2, 3〉, the accumulator value
haSA[i]+m = ha5 from the accumulator set HA(T), and the
authenticated Authi = Auth3 for the accumulator value ha3.
Finally, the server sends back the result

χA = ‘match’,

�A = {2, 3, ha5, Auth3}

to Alice.
Alice receives her ‘match’ result and the corresponding

proof. To verify correctness, Alice first computes the accu-
mulator value ha′3 = H((3 − f)||H((4 − f)||ha5)), and then
uses the authenticated Auth3 to verify the correctness of ha′3.
If the verification process succeeds, the returned result from
the server is correct and Alice accepts it. Otherwise, Alice
rejects the result.

Another user Bob sends the pattern PB = “fg” for query,
which is a mismatched pattern. The server runs the query

algorithm to search the result, obtaining two tuples

〈 j, SA[j]〉 = 〈2, 3〉
〈 j + 1, SA[j + 1]〉 = 〈3, 4〉

for proving that

SF3 < PB < SF4.

The server computes the longest common prefix for SF3 and
PB , SF4 and PB , which is

m1 = lcp(SF3, PB) = 1

m2 = lcp(SF4, PB) = 1.

The server gets two characters

T [SA[j] + m1] = T [3+ 1] = ‘f’

T [SA[j + 1] + m2] = T [4+ 1] = ‘i’

from text T . The server gets the accumulator values
haSA[j]+m1+1 = ha5, haSA[j+1]+m2+1 = ha6 from the
ordered set accumulator HA(T), and the authenticated
Auth j = Auth3 for accumulator value ha3 and the authen-
ticated Auth j+1 = Auth4 for accumulator value ha4. Finally,
the server sends the result

χB = ‘mismatch’,

�B = {{2, 3, 1, ‘f’, ha5, Auth3}, {3, 4, 1, ‘i’, ha6, Auth4}}
to Bob.

Bob also receives his ‘mismatch’ result and proof. Bob
first checks the two indices 2 and 3 are continuous, and
whether ‘f’ < PB [2] and ‘i’ > PB [2]. Bob then computes
the accumulator values, ha′3 = H((3 − f)||H((4 − f)||ha5))
and ha′4 = H((4 − f)||H((5 − i)||ha6)). Bob further uses
the authenticated Auth3 to verify the correctness of ha′3 and
the authenticated Auth4 to verify the correctness of ha′4. If
all the verification succeeds, the returned result is correct and
Bob accepts it. Otherwise, Bob rejects the returned result.

2684 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

IV. OPTIMIZED SCHEME

A. Optimal Search Time, Optimal Proof Size,
and Public Verifiability

We first note that our scheme can be directly improved to
achieve optimal O(m) search time for a pattern with length
m. Compared with our current scheme with search complexity
O(m log n), it is a significant speedup.

Our idea is to assist the suffix array with two new data
structures. Traditionally, a suffix array combined with a longest
common prefix (LCP) array and a child table, which are
two other arrays, can further improve pattern matching to
O(m) time [22]. Note that our basic scheme as in last section
employs a suffix array as a black box; the two new arrays
can also be embedded in a black-box manner. In addition,
the basic scheme only depends on the embedded authentication
information of the ordered set accumulators and the detailed
match/mismatch position of a pattern. The two new arrays,
i.e. the LCP array and the child table, do not influence the
match/mismatch position of a query; thus, they can be directly
incorporated into our scheme, achieving the optimal O(m)
search time.

We note that the proof size is O(1) if the employed authen-
tication scheme is a message authentication code scheme (e.g.
HMAC). Thus, the proof size is optimal. However, the MAC
scheme requires a secret key shared by the data owner and
the data user. Thus, our scheme with a MAC is not public
verifiable.

We may replace a MAC scheme with a Merkle hash tree
scheme which requires no secret key, but just a public hash
tree root value. In this case, any one with the root value
can verify the correctness of the server’s result, achieving
public verifiability. A drawback is that the communication cost
becomes O(log n).

We may also replace a MAC with any secure digital
signature scheme. The communication cost is still O(1);
the resulted verifiable pattern matching scheme can also be
verified by anyone publicly. But it requires a computational
tradeoff; this is because digital signature is much less efficient
than a hash function.

B. Fast Verification for Multiple-Occurrence Matches

Our scheme in Section III already supports single pattern
matching. A pattern may also be matched by multiple
substrings in a text, which we call multiple-occurrence
match. This subsection proposes a scheme to enable fast
verification for such case.

To verify multiple matches, a straight-forward approach is
to apply single match verification multiple times. Suppose the
cost for one match verification is tunit. For a k-occurrence
match, the complexity is k · tunit. Now we show this can be
done much faster by again employing the longest common
prefix (LCP) array.

Specifically, the LCP array is a numeric array with
length n similar to the suffix array. It stores the length
of the longest common prefix between adjacent sorted
suffixes [22], [24], [25]. Denote an LCP array as LCP and the
longest common prefix of two strings α and β as lcp(α, β).

Algorithm 5 Fast Multi-Occurrence Match
1: Preprocessing. The data owner additionally constructs a

LCP array LCP. Similar to the authentication of all suffixes,
the data owner derives another semantics-embedded set
{yi = 〈i, SA[i], LCP[i]〉, 1 ≤ i ≤ n} and computes its
ordered set accumulator HALCP = {halcpi , 1 ≤ i ≤ n}
where

halcpi = H(yi ||H(· · ·H(yn−1||H(yn)))).

The data owner also authenticates each halcpi using the
authentication scheme that guarantees the correctness of all
the hai ’s in the basic scheme.

2: Search. For a multi-occurrence match, the server finds all
the matches. To return a proof, the server gets the proof
�first for the first match, the proof �last for the last match
using our basic scheme.

3: In addition, the server returns all entries {i = first, · · · , j =
last} of {yi = 〈i, SA[i], LCP[i]〉} between the first and last
match, together with the authenticated accumulator value
halcpfirst, halcplast of the first and last entries.

4: Verify. The data user just verifies the first and last match
using our basic scheme. The user further verifies: 1)
whether the returned first and last LCP entries are smaller
than the pattern length and other entries are greater or equal
to pattern length, 2) whether the indices of LCP entries are
between first and last, 3) whether the first and last entries
pass the authentication verification, and 4) whether

halcpfirst = H(yi ||H(· · ·H(y j−1||halcplast)))

is true. If all verifications pass, the data user accepts the
result; otherwise, reject.

Then, LCP[i] = lcp(SFSA[i−1], SFSA[i]), 1 < i ≤ n; the first
entry of LCP is not defined. For the example string “suffix$”
in Section III-G, its LCP array is

LCP = [⊥, 0, 1, 0, 0, 0, 0].
We now explain our idea for fast multi-occurrence match

verification as follows. The spirit is to transform string
comparison verifications into integer comparison verifications.
First, we observe that the suffixes corresponding to the sub-
strings of multiple pattern matches are stored consecutively in
the suffix array. To verify multiple matches, we only need to
check the first match and the last match in the suffix array,
and then check whether the longest common prefixes of two
consecutive suffixes is greater or equal to the length of the
queried pattern, using the LCP array. To ensure all matches are
included, just check the matched-first and -last entries in the
LCP array, which should be smaller than the pattern length.
Second, the LCP array also needs to be fast authenticated.
We can again use the ordered set accumulator, which further
speedups the authenticated comparison of pattern length and
the longest common prefixes of two consecutive suffixes.

Algorithm 5 details our optimized scheme for multi-
occurrence match. We explain that we put the index in the
set {yi = 〈i, SA[i], LCP[i]〉, 1 ≤ i ≤ n} because we want

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2685

to prevent the server from cheating, and that we put SA[i]
in because the server needs to tell the data user where the
pattern is matched in the outsourced text. Compared with the
basic scheme, the optimized scheme only requires two single
match verifications, plus three more light-weight authentica-
tion verifications. Thus, the optimized scheme features better
performance.

C. Protecting Privacy

The proposed scheme well satisfies applications where
verifiability is the only concern. When privacy is further
required, we now outline how to preserve text privacy and
search privacy.

Our observation is as follows: The privacy leakage comes
from the outsourced text and the queried pattern. The verifia-
bility part of the proposed scheme does not leak privacy; it is
merely hash computations on the ordered set accumulators.
Thus the main task is to protect the privacy of the outsourced
text and the queried pattern, with the challenge that the cloud
still has a way to search the queried pattern.

To solve this challenge, our main idea is twofold: 1) embed
privacy preserving search in Algorithm 1 and 2) allow the
user to interact with the cloud. Specifically, we first encrypt
the text and search query using homomorphic encryption that
supports homomorphic addition/substraction (e.g. consider the
Paillier encryption scheme). To enable the binary search of
the queried pattern, the user sends an encrypted pattern to the
cloud; the cloud first compares the the queried pattern with the
middle suffix string SFn

2
using homomorphic evaluations of

substraction and then sends the encrypted substraction result
back to the user. By decrypting the result, the user knows
whether to search up or down next and asks the cloud to
perform recursive searches. In essence, this is an encrypted
version of Algorithm 1. Once the matched/mismathed position
is found, the cloud proceeds the same way as in our proposed
scheme.

It is worthy noting that we trade-off performance of fast
verifiability for privacy protection. Logarithmic rounds of
interaction is required. This is expected because privacy does
need additional processing. In future, we plan to find better
approaches to guarantee verifiability and privacy simultane-
ously in fast manner.

V. DISCUSSIONS

A. Security

Our scheme mainly builds its security on collision-resistance
of cryptographic hash functions given a secure authentication
scheme. In practice, various cryptographic hash functions
exist, e.g. SHA256; we may just choose one to be plugged in
our scheme. We prove the security in the following theorem.

Theorem 2: Given a secure authentication scheme (e.g.
MAC, Merkle hash tree, digital signatures) which guarantees
the correctness of the order set accumulator, our scheme is
secure with respect to Definition 1 if the cryptographic hash
function we employed is collision resistant.

Proof: We first show the proof for the single-match case.

Suppose our scheme is not secure, then the server can find a
forgery tuple (q∗, χ∗, �∗) according to our security definition.
We employ the forgery to find a collision for the hash function.
We distinguish the forgery into two cases.

1) Match Forgery Case: That is the queried pattern q∗
cannot be matched by the outsourced text, but the server
shows that it is matched using the proof (χ∗, �∗) where χ∗ =
‘match’ and �∗ = {i, SA[i], haSA[i]+m , Authi }. The server
may choose to cheat either on i, SA[i], Authi or haSA[i]+m .

If the cloud cheats on the former, the authentication scheme
is not secure, which contradicts with our assumption. If the
former is correct, we proceed to next. In this case haSA[i] is
correct and we have

haSA[i] = H(x1||H(x2||H(· · ·H(xm ||haSA[i]+m))))

where x j = (SA[i] + j − 1|| − ||p[j]). Note that when
outsourcing, we have

haSA[i] = H(y1||H(y2||H(· · ·H(ym ||haSA[i]+m))))

where y j = (SA[i]+ j −1||− ||T [SA[i]+ j −1]). These two
are different inputs with the same cryptographic hash value.
Thus, we find a hash collision.

2) Mismatch Forgery Case: That is the queried pattern q∗
can be matched by the outsourced text, but the server shows
that it is not matched during the search using the proof
(χ∗, �∗) where

χ∗ = ‘mismatch’,

�∗ = {{i, SA[i], m1, T [SA[i] + m1],
haSA[i]+m1+1, Authi },
{i + 1, SA[i + 1], m2, T [SA[i + 1] + m2],
haSA[i+1]+m2+1, Authi+1}}.

Again the same analysis with the ‘Match Forgery Case’
applies here to find a hash collision. Specifically, the authen-
ticated Authi ensures the first two lines of �∗ pass the
verification. Then the server needs to cheat on the last two
lines of �∗. Note that Authi+1 also guarantees the correctness
of {i + 1, SA[i + 1]}. Thus the server needs to cheat on
m2, T [SA[i + 1] + m2], haSA[i+1]+m2+1 which are different
from the outsourced text. Note that when outsourcing, hai is
computed using the ordered set accumulator on the original
text. The two above are different inputs into the hash function
but have the same output hai , from which we have found a
hash collision.

We now turn to multi-occurrence matches. Similarly,
the first match and the last match cannot be forged; otherwise,
there is a hash collision using the same argument above. For
verifying the indices of the returned LCP entries, they are
authenticated by the ordered set accumulator. If they can be
forged, they together with original LCP entries comprise a
hash collision.

Because the probabilities of breaking a secure authenti-
cation scheme and finding a hash collision are both negli-
gible, the probability of breaking our scheme Pr[Cheat] is
also negligible. Combing the above arguments, the proof is
completed.

2686 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

TABLE I

THEORETICAL PERFORMANCE COMPARISON

B. Theoretical Performance

We now analyze the theoretical performance of our veri-
fiable pattern matching scheme and compare the theoretical
performance with state-of-the-art work [5]. Table I lists a
short summary where our scheme is instantiated using MAC
and Merkle hash tree respectively. The theoretical compar-
ison is further validated during experimental evaluations in
Section VI.

1) Storage Cost: The storage size of the preprocessed
data outsourced to server is O(n). First, the data structures
including the suffix array and the longest common prefix
array are linear in the length of text. Second, the ordered set
accumulator values are stored according to the suffixes of text
and longest common prefix array, which also have size O(n).
Last, the authentication scheme (e.g. MAC, hash tree, etc.)
is built for authenticating the ordered set accumulator values;
thus it has size O(n). In total, the storage cost of preprocessed
data is O(n). Comparing with [5], which also has O(n) storage
cost, the coefficients in the big O is smaller for our scheme.
The main reason is that suffix array is more space efficient, and
that our scheme employs the ordered set accumulator which
is smaller than general accumulator based on bilinear groups
over big integers in [5].

2) Computation Cost: For preprocessing in the data owner,
building the suffix array, the LCP array, and the ordered set
accumulators takes O(n) time. Computing a MAC or building
a Merkle hash tree also takes time O(n). Thus, the total cost
for preprocessing is O(n). Although the preprocessing time
in [5] is also O(n), it uses heavy algebraic computations in
a bilinear group; it costs much higher computation than our
scheme which only involves cryptographic hash computation,
as validated in later experimental evaluation.

The search time includes query time and proof generation
time. The SEARCH algorithm in our optimized scheme costs
O(m) time to find out the occurrence of the queried pattern
in text. It further takes O(1) time to obtain the authentication
information for the ordered set accumulator. In total, the search
time in our optimized scheme is O(m). It is similar to the
O(m) complexity of [5].

For the verification, the computation that accumulates O(m)
element for a pattern needs O(m) hashing operation in
our scheme. The verification of accumulator value using an
authentication scheme can be done in O(1) time in our
optimized scheme. Thus the verification cost achieves O(m)
in our scheme. The verification time in [5] is O(m log m) and
the verification involves many group element exponentiation
computations. Thus, the cost of our scheme is much smaller
than [5]. Note that verification is an on-line operation; thus a
smaller cost is considerably better.

3) Communication Cost: The proof returned to a user
consists of a constant number of ordered set accumulator
values and its authentication information. Thus the proof size
is O(1) in our scheme with MAC, which is similar to the
theoretical O(1) as in [5]. However, the coefficients in the
big O differ considerably; our coefficient is much smaller
due to the succinct proof. Our later experimental results also
confirm that our proof size is better.

C. Limitation

It is worth noting that our current scheme cannot support
efficient data updates, i.e. adding, deleting, modifying data.
This is because the underlying data structure to enable fast pat-
tern matching substantially changes with data updates, which
requires substantial trustworthy updates of its authentication
on the server. This is a common problem both for our scheme
and other schemes, including the state-of-the-art scheme [5].
We leave this as an ongoing work.

VI. PERFORMANCE EVALUATION

A. Methodology

We prototyped our scheme in both its basic and optimized
version to empirically evaluate the performance of our scheme.
We employ public human genome data set [26] in characters
and open-source our code [27]. In our evaluation, we first
compare our scheme with the state-of-the-art work; we then
further give a more in-depth evaluation of our scheme due to
its more practical efficiency and the resulted potentiality to be
deployed.

1) Performance Measure: We mainly evaluate the computa-
tion, communication, and storage cost that are required by our
scheme in three phases, i.e. Preprocess, Search, and Verify,
respectively. We report an averaged experimental results to get
a stable performance indicator. We also vary the text length
and pattern length to understand the detailed performance of
our scheme.

2) Implementation Detail: Our prototype is written in Java
on a PC with Intel Core i7-4790k 4.00GHz CPU and 24G
RAM; each character of the human genome data set is stored
as a two-byte, Unicode character in Java. We set the JVM
size as 16G. We employ a pubic library ‘classmexer.jar’ [28]
to evaluate the memory size of Java objects, which are
useful to evaluate the storage cost of our scheme. In our
prototype, we simulate the data owner, the server, and the
users in a PC. The data owner and data users share the secret
key/root hash value of the Merkle hash tree for authentication.
Communications between parties are implemented by passing
parameters through functions. We employ SHA-256 as our
cryptographic hash function. We instantiated our proposed
verifiable pattern matching scheme both with a MAC and a
Merkel hash tree scheme separately to authenticate the ordered
set accumulators. We refer to the former as the MAC scheme
while the later as the MHT scheme.

B. Comparison With the State-of-the-Art Scheme

We first compared our scheme with the state-of-the-art work
in [5], which we refer to as the ST scheme. Since we were

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2687

TABLE II

STORAGE COST COMPARISON

not able to get the source code of [5], we also implemented
the scheme of [5] and open-sourced our code [29]. We used
the well-accepted jPBC library to compute bilinear computa-
tions [30] for the ST scheme; specifically, we adopt type A
curve with r Bi t = 256, q Bi t = 1024.

We observed that the results of our implementation of the
state-of-the-art scheme [5] are close to the performance results
reported in [5]; that is, our numbers when scaled are similar
to the numbers of [5]. We explain more as follows: The
original setup time of [5] are 99.6s for 10,000 long text,
and 976.5s for 100,000 long text; in our implementation,
the times are 1064.288s for 20,000 long text, and 5362.205s
for 100,1000 long text. The scale ration is roughly 5. For veri-
fication which is the core performance indicator of a verifiable
pattern matching scheme, the time cost of [5] is roughly 50ms
for 200 long pattern, and 90ms for 400 long pattern; in our
implementation, the times are 7.840s (7840ms) and 14.850s
(14850ms) respectively. The ratio is also constant, roughly
being 120. We also note that Java is generally slower than
C++. Even in this case, the verification time in our proposed
scheme is in the orders of milliseconds, which is orders-of-
magnitude better than [5]. This really comes from theoretical
confidence: our scheme only relies on hash functions while [5]
heavily relies on paring operations and big integer arithmetic.

1) Storage Cost: The storage cost is incurred by the addi-
tional data structures and their authentication. We measure the
cost 10 times and report the average performance of 10 tests.
Table II shows the storage cost of the ST scheme and our
scheme for texts whose length range from 20,000 to 100,000.
The experimental results confirm that the storage cost of the
ST scheme is larger than that in our scheme. The main reason
is that the authenticated data in the ST scheme are a few
bilinear group elements, and that the size of bilinear group
elements is bigger than the hash values in our scheme.

2) Computation Cost: We now compare computation cost.
We report an average measure of 10 tests for preprocessing
time and 100 tests for search and verification time.

a) Preprocessing time: Table III lists the comparison.
The experimental results are consistent with our theoretical
analysis. The preprocessing time in our scheme is much
smaller than that in the ST scheme. This is because the
preprocessing computation in the ST scheme are mainly big
integer operations of bilinear group elements. In contrast, our
scheme only requires the cryptographic hash operations which
are much simpler and highly more efficient.

b) Verification time: Tables IV and V show the exper-
imental results on patterns with different length. We again
confirm that our scheme are orders of magnitude faster. This

TABLE III

PREPROCESSING TIME COMPARISON

TABLE IV

VERIFICATION TIME COMPARISON FOR SINGLE-MATCH

ON 100,000-LONG FIXED TEXT

TABLE V

VERIFICATION TIME COMPARISON FOR MISMATCH

ON 100,000 LONG FIXED TEXT

reason is still the sharp efficiency gains of hash functions over
big integer operations on bilinear curves.

We also tested multi-matches. We fix the text with
100,000 long and increase the pattern length from 2 to 10 in
order to test the influence of occurrences on verification time.
Table VI shows the comparison results. Again, our scheme is
significantly faster than the ST scheme, as demonstrated in the
table. Experimental results also show that with the increasing
of occurrences, the verification time in both schemes increases
due to the influence of occurrences.

c) Search time: We now compare the search time.
We consider single-match and mismatch situations on fixed
text and fixed pattern length as a case study. The search time
contains the time to find a pattern in the text, and the time to
find its proof information that convinces the correctness of the
pattern matching results. Figure 2 displays the experimental
results. Our scheme in general costs slightly smaller time.
The reason is the ST scheme involves tree traversals while
our scheme mainly contains direct array accesses, which is
faster than tree traversals.

3) Communication Cost: Figure 3 displays the communica-
tion comparison. The cost is also an average result of 100 tests.
The proof size in our scheme is much smaller than that in the
ST scheme. This reason is that the proof items in our scheme
are more succinct than that in ST scheme, and also that the
bilinear group elements(part of the proof in the ST scheme) is
much bigger than the cryptographic hash value in our scheme.
The same observation also applies to multi-occurrence matches
as in Table VII.

2688 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

TABLE VI

VERIFICATION TIME FOR MULTI-MATCH ON FIXED 100,000 LONG TEXT IN OUR SCHEME AND ST SCHEME

Fig. 2. Search time comparison for single-match and mismatch. (a) Single-match result for 100,000-long fixed text. (b) Mismatch result for 100,000-long
fixed text. (c) Single-match result for 10-long fixed pattern. (d) Mismatch result for 10-long fixed pattern.

Fig. 3. Proof size comparison for single-match and mismatch. (a) Single-match result for 100,000-long fixed text. (b) Mismatch result for 100,000-long fixed
text. (c) Single-match result for 10-long fixed pattern. (d) Mismatch result for 10-long fixed pattern.

TABLE VII

PROOF SIZE FOR MULTI-MATCH ON 100,000 LONG FIXED TEXT IN OUR SCHEME AND ST SCHEME

4) Performance Comparison Summary: Our experimental
comparison confirms that our scheme is orders of magnitude
faster than the state-of-the-art work, especially when outsourc-
ing the text, verifying the server’s returned result. Our scheme
also incurs smaller proof size. A remaining question is whether
our scheme is scalable to larger data sets, which we investigate
next.

C. Scalability Evaluation of Our Scheme

We further increase the length of the text from 2 million to
10 million to test the scalability of our scheme. Experimental
results show that our scheme is also scalable; for detailed
experimental data, please refer to our online supplemental
material and source codes due to page limits.

D. Summary of Performance Evaluation

Experimental results confirm that the computation and com-
munication cost for the MHT scheme and the MAC scheme are

small; the storage cost is also acceptable in nowadays cloud
computing environments. Our scheme is also scalable. The
MHT scheme and MAC scheme have different strengths. The
MHT scheme even does not require secret keys while the MAC
scheme does need one. Thus MHT supports public verification.
However, the performance for proof size of MAC is better.
We therefore remark that applications may trade-off between
performance and user application scenarios when employing
the proposed verifiable pattern matching scheme.

VII. CONCLUSIONS

In this paper, we propose a verifiable pattern matching
scheme. Our scheme mainly relies on cryptographic hash
functions and thus is highly efficient. Our scheme also uses
a modular-and-minimal design methodology such that the
structure of our scheme is clear. We also embed minimal
information for the parameters in our scheme to enable
fast verifiable pattern matching. Our scheme further supports

CHEN et al.: SECURE HASHING-BASED VERIFIABLE PATTERN MATCHING 2689

public verifiability and efficient multiple-occurrence pattern
matching. No secret key is needed in our scheme if desired by
upper-layer applications. Our experimental results show that
our protocol is orders of magnitude faster than the state-of-
the-art work.

ACKNOWLEDGMENTS

The authors are grateful for the reviewers’ insightful com-
ments.

REFERENCES

[1] R. Sion, “Query execution assurance for outsourced databases,” in Proc.
VLDB, 2005, pp. 601–612.

[2] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic authen-
ticated index structures for outsourced databases,” in Proc. SIGMOD,
2006, pp. 121–132.

[3] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally, “Database
management as a service: Challenges and opportunities,” in Proc. ICDE,
2009, pp. 1709–1716.

[4] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Trans. Storage, vol. 2, no. 2,
pp. 107–138, 2006.

[5] D. Papadopoulos, C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Practical authenticated pattern matching with optimal proof size,” Proc.
VLDB Endowment, vol. 8, no. 7, pp. 750–761, 2015.

[6] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[7] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network
function outsourcing: Requirements, challenges, and roadmap,” in Proc.
Workshop Hot Topics Middleboxes Netw. Function Virtualization, 2013,
pp. 25–30.

[8] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and
S. G. Stubblebine, “A general model for authenticated data structures,”
Algorithmica, vol. 39, no. 1, pp. 21–41, May 2004.

[9] D. Catalano, M. Di Raimondo, and S. Faro, “Verifiable pattern matching
on outsourced texts,” in Proc. SCN, 2016, pp. 333–350.

[10] J. Zhou, Z. Cao, and X. Dong, “PPOPM: More efficient privacy
preserving outsourced pattern matching,” in Proc. ESORICS, 2016,
pp. 135–153.

[11] Z. Zhou, T. Zhang, S. S. M. Chow, Y. Zhang, and K. Zhang,
“Efficient authenticated multi-pattern matching,” in Proc. ASIACCS,
2016, pp. 593–604.

[12] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu, and M. Xu, “Generalized
pattern matching string search on encrypted data in cloud systems,” in
Proc. IEEE INFOCOM, Apr. 2015, pp. 2101–2109.

[13] K. Liang, X. Huang, F. Guo, and J. K. Liu, “Privacy-preserving and
regular language search over encrypted cloud data,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 10, pp. 2365–2376, Oct. 2016.

[14] Z. Fu, F. Huang, K. Ren, J. Weng, and C. Wang, “Privacy-preserving
smart semantic search based on conceptual graphs over encrypted
outsourced data,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8,
pp. 1874–1884, Aug. 2017.

[15] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integrity
with Voronoi neighbors,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 4,
pp. 863–876, Apr. 2013.

[16] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in location-
based services with confidentiality,” Proc. VLDB Endowment, vol. 7,
no. 1, pp. 49–60, 2013.

[17] F. Riaz-ud Din, R. Doss, and W. Zhou, “String matching query ver-
ification on cloud-hosted databases,” in Proc. 17th Int. Conf. Distrib.
Comput. Netw., 2016, p. 17.

[18] Y. Zhang, J. Katz, and C. Papamanthou, “IntegriDB: Verifiable SQL for
outsourced databases,” in Proc. ACM CCS, 2015, pp. 1480–1491.

[19] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly verifiable
databases with efficient updates,” IEEE Trans. Depend. Sec. Comput.,
vol. 12, no. 5, pp. 546–556, Sep. 2015.

[20] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” IEEE Trans. Comput.,
vol. 65, no. 10, pp. 3184–3195, Oct. 2016.

[21] U. Manber and G. Myers, “Suffix arrays: A new method for on-line
string searches,” SIAM J. Comput., vol. 22, no. 5, pp. 935–948, 1993.

[22] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees
with enhanced suffix arrays,” J. Discrete Algorithms, vol. 2, no. 1,
pp. 53–86, 2004.

[23] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard, “Dynamic
extended suffix arrays,” J. Discrete Algorithms, vol. 8, no. 2,
pp. 241–257, 2010.

[24] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-
time longest-common-prefix computation in suffix arrays and its appli-
cations,” in Proc. Annu. Symp. Combinat. Pattern Matching, 2001,
pp. 181–192.

[25] S. Gog and E. Ohlebusch, “Fast and lightweight LCP-array construc-
tion algorithms,” in Proc. Meeting Algorithm Eng. Experim., 2011,
pp. 25–34.

[26] P. Gutenberg. (2016). Human Genome Project, Chromosome 4. [Online].
Available: http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?
num=2204

[27] D. Wang. Source Code for Secure Hashing Based Verifiable Pattern
Match. Accessed: Dec. 2017. [Online]. Available: https://sites.google.
com/site/chenfeiorange/resource/VerifiablePatternMatching.zip

[28] N. Coffey. (2017). Classmexer Agent. [Online]. Available:
http://www.javamex.com/classmexer/

[29] D. Wang. (2017). Source Code for Verifiable Pattern Match of VLDB
2015. [Online]. Available: https://sites.google.com/site/chenfeiorange/
resource/VerifiablePatternMatchingST.zip

[30] A. de Caro and V. Iovino, “jPBC: Java pairing based cryptography,” in
Proc. 16th IEEE Symp. Comput. Commun., Jun. 2011, pp. 850–855.

Fei Chen received the Ph.D. degree in computer
science and engineering from The Chinese Uni-
versity of Hong Kong. He joined the College of
Computer Science and Engineering, Shenzhen Uni-
versity, China, as a Lecturer, in 2015. His research
interests include information and network security,
data protection, and privacy.

Donghong Wang is currently pursuing the master’s
degree in computer science and engineering with
Shenzhen University, China. His research interests
include information and network security, data pro-
tection, and privacy.

Ronghua Li received the Ph.D. degree from The
Chinese University of Hong Kong in 2013. He is
currently an Associate Professor with the Beijing
Institute of Technology, Beijing, China. His research
interests include graph data management and min-
ing, social network analysis, graph computation sys-
tems, and graph-based machine learning.

Jianyong Chen received the Ph.D. degree from
the City University of Hong Kong, Hong Kong,
in 2003. He is currently a Professor with the
College of Computer Science and Software Engi-
neering, Shenzhen University. His research inter-
ests include artificial intelligence and information
security. From 2004 to 2012, he was the Vice
Chairman of the International Telecommunication
Union-Telecommunication (ITU-T) SG17. He was
an Editor of three recommendations developed in
ITU-T SG17.

2690 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 11, NOVEMBER 2018

Zhong Ming is currently a Professor with the Col-
lege of Computer and Software Engineering, Shen-
zhen University. He led four projects of the National
Natural Science Foundation, and two projects of the
Natural Science Foundation of Guangdong Province,
China. His major research interests include Internet
of Things and cloud computing. He is a member of
the CCF Council.

Alex X. Liu received the Ph.D. degree in computer
science from The University of Texas at Austin
in 2006. He is currently a Professor with the
Department of Computer Science and Engineering,
Michigan State University. His research interests
focus on networking and security. He received the
IEEE and IFIP William C. Carter Award in 2004,
the National Science Foundation CAREER Award
in 2009, and the Michigan State University Withrow
Distinguished Scholar Award in 2011. He received
the best paper awards from ICNP-2012, SRDS-

2012, and LISA-2010. He has served as an Editor for the IEEE/ACM
TRANSACTIONS ON NETWORKING. He is currently an Associate Editor of the
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING and the
IEEE TRANSACTIONS ON MOBILE COMPUTING. He is also an Area Editor
of Computer Communications.

Huayi Duan received the B.S. degree (Hons.) from
the City University of Hong Kong, Hong Kong,
in 2015, where he is currently pursuing the Ph.D.
degree with the Department of Computer Science.
His research interests include network security and
cloud security.

Cong Wang received the Ph.D. degree in electrical
and computer engineering from the Illinois Institute
of Technology, USA. He is currently an Associate
Professor with the Department of Computer Science,
City University of Hong Kong. His research has
been supported by multiple government research
fund agencies, including National Natural Science
Foundation of China, Hong Kong Research Grants
Council, and Hong Kong Innovation and Technology
Commission. His current research interests include
data and computation outsourcing security in the

context of cloud computing, network security in emerging Internet architec-
ture, multimedia security and its applications, and privacy-enhancing tech-
nologies in the context of big data and Internet of Things. He is a member
of the ACM. He was a co-recipient of CHINACOM 2009, the Best Paper
Award of the IEEE MSN 2015, and the Best Student Paper Award of IEEE
ICDCS 2017. He received the President’s Awards from the City University of
Hong Kong in 2016. He has been serving as the TPC co-chair for a number
of IEEE conferences/workshops.

Jing Qin received the Ph.D. degree in computer
science and engineering from The Chinese Univer-
sity of Hong Kong in 2009. He is currently an
Assistant Professor with the Centre for Smart Health,
School of Nursing, The Hong Kong Polytechnic
University. He has authored over 150 papers in
major journals and conferences in these areas. He
has participated in over 10 research projects. His
research interests include medical image process-
ing, virtual/augmented reality for healthcare and
medicine training, deep learning, visualization and

human–computer interaction, and health informatics. He and his collabora-
tors were a recipient of the Outstanding Paper Award at the International
Simulation and Gaming Association 40th Annual Conference in 2009. He
received the Global Scholarship Program for Research Excellence (CNOOC
Grants) from CUHK in 2008, the Hong Kong Medical and Health Device
Industries Association Student Research Award in 2009, the Best Paper Award
in Medical Image Computing in International Conference on Medical Imaging
and Augmented Reality 2016, the Champion award at The 3rd Hong Kong
Innovation Day and Innovation Awards Competition, and the Medical Image
Analysis-MICCAI’17 Best Paper Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

